Project 1

The goals are:

1. Create a GUI

2. Let the user select a data file, using JFileChooser

3. Read the data file, creating the specified internal data structure (see the Introduction for the classes and variables of the structure).

4. Display the internal data structure in a nice format in the GUI

1. use JScrollPane and JTextArea

5. Display the results of a Search specified by the user

1. JTextField to specify the search target

2. Searching targets: name, index, skill would be a minimum
you are encouraged to provide other options

3. Note that a search may return more than one item

4. DO NOT create new data structures (beyond the specified internal data structure) to search
you may create a structure of found items as a return value

Data file format:

· Each item in the simulation will appear on a single line of the data file.

· The data file may have comment lines, which will start with a //.

· There may be blank lines in the data file, which your program should accept and ignore.

· The data lines will start with one of the following flag values, indicating which item is being specified, its name, its index, and the index of its parent - which is used to specify the connections used to create the internal data structure (ie, assign an item to it parent or parent ArrayList).

· For most items there will be additional fields appropriate to the class of that item.

· The fields on a line are space delimited (perhaps more than one space)

· This works well with Scanner methods, such as next(), nextInt() and nextDouble().

Here are the details of valid lines, with an example of each line.

// port   name index parent(null)
//    port   <string> <int> <int>
port Kandahar 10002 0

// dock   name index parent(port)
//    dock   <string> <int> <int>
  dock Pier_5 20005 10001 30005

// ship   name index parent(dock/port) weight length width draft
//    ship   <string> <int> <int> <double> <double> <double> <double>
    ship               Reason 40003 10000 165.91 447.15 85.83 27.07

// cship  name index parent(dock/port) weight length width draft cargoWeight cargoVolume cargoValue
//    cship  <string> <int> <int> <double> <double> <double> <double> <double> <double> <double>
    cship               Suites 40003 10000 165.91 447.15 85.83 27.07 125.09 176.80 857.43

// pship  name index parent(dock/port) weight length width draft numPassengers numRooms numOccupied
//    pship  <string> <int> <int> <double> <double> <double> <double> <int> <int> <int>
    pship      "ZZZ_Hysterics" 30002 20002 103.71 327.92 56.43 30.23 3212 917 917

// person name index parent skill
//    person <string> <int> <int> <string>
    person              Alberto 50013 10001 cleaner

// job    name index parent duration [skill]* (zero or more, matches skill in person, may repeat)
//    job    <string> <int> <int> <double> [<string>]* (ie, zero or more)
    job         Job_10_94_27 60020 30007 77.78 carpenter cleaner clerk
You may assume that the data file is correctly formatted and that the parent links exist and are encountered in the data file as item indices before they are referenced as parent links.

There is a Java program (CreateSeaPortDataFile.java) provided with this package that will generate data files with various characteristics with the correct format. You should be using the program to generate your own data files to test various aspects of your project programs.

Sample input file:

// File: aSPaa.txt
// Data file for SeaPort projects
// Date: Sat Jul 09 22:51:16 EDT 2016
// parameters: 1 1 5 5 1 5
//   ports, docks, pships, cships, jobs, persons

// port   name index parent(null)
//    port   <string> <int> <int>
port Lanshan 10000 0

// dock   name index parent(port)
//    dock   <string> <int> <int>
  dock Pier_4 20004 10000 30004
  dock Pier_0 20000 10000 30000
  dock Pier_1 20001 10000 30001
  dock Pier_3 20003 10000 30003
  dock Pier_2 20002 10000 30002

// pship  name index parent(dock/port) weight length width draft numPassengers numRooms numOccupied
//    pship  <string> <int> <int> <double> <double> <double> <double> <int> <int> <int>
    pship           Gallinules 30000 20000 125.99 234.70 60.67 37.14 746 246 246
    pship               Remora 30001 20001 126.38 358.27 74.12 31.54 3768 979 979
    pship     Absentmindedness 30004 20004 86.74 450.43 33.13 41.67 2143 920 920
    pship        Preanesthetic 30003 20003 149.85 483.92 125.71 31.21 166 409 83
    pship            Shoetrees 30002 20002 134.41 156.96 120.31 35.20 1673 633 633

// cship  name index parent(dock/port) weight length width draft cargoWeight cargoVolume cargoValue
//    cship  <string> <int> <int> <double> <double> <double> <double> <double> <double> <double>
    cship            Erosional 40001 10000 200.80 242.33 38.31 23.49 172.73 188.54 235.57
    cship            Kielbasas 40000 10000 120.85 362.55 96.82 19.09 33.08 188.31 261.57
    cship             Generics 40002 10000 79.90 234.26 73.18 15.71 125.27 179.00 729.95
    cship            Barcelona 40003 10000 219.92 443.54 104.44 34.16 86.69 139.89 813.72
    cship              Toluene 40004 10000 189.12 448.99 73.97 37.67 88.90 175.03 1002.63

// person name index parent skill
//    person <string> <int> <int> <string>
    person                 Sara 50000 10000 electrician
    person                Duane 50002 10000 inspector
    person                Betsy 50004 10000 cleaner
    person               Archie 50003 10000 captain
    person               Thomas 50001 10000 clerk
Sample output as plain text - which should be displayed in a JTextArea on a JScrollPane in the BorderLayout.CENTER area of a JFrame:

>>>>> The world:


SeaPort: Lanshan 10000 

  Dock: Pier_4 20004 
    Ship: Passenger ship: Absentmindedness 30004 

  Dock: Pier_0 20000 
    Ship: Passenger ship: Gallinules 30000 

  Dock: Pier_1 20001 
    Ship: Passenger ship: Remora 30001 

  Dock: Pier_3 20003 
    Ship: Passenger ship: Preanesthetic 30003 

  Dock: Pier_2 20002 
    Ship: Passenger ship: Shoetrees 30002 

 --- List of all ships in que:
   > Cargo Ship: Erosional 40001 
   > Cargo Ship: Kielbasas 40000 
   > Cargo Ship: Generics 40002 
   > Cargo Ship: Barcelona 40003 
   > Cargo Ship: Toluene 40004 

 --- List of all ships:
   > Passenger ship: Gallinules 30000 
   > Passenger ship: Remora 30001 
   > Passenger ship: Absentmindedness 30004 
   > Passenger ship: Preanesthetic 30003 
   > Passenger ship: Shoetrees 30002 
   > Cargo Ship: Erosional 40001 
   > Cargo Ship: Kielbasas 40000 
   > Cargo Ship: Generics 40002 
   > Cargo Ship: Barcelona 40003 
   > Cargo Ship: Toluene 40004 

 --- List of all persons:
   > Person: Sara 50000 electrician
   > Person: Duane 50002 inspector
   > Person: Betsy 50004 cleaner
   > Person: Archie 50003 captain
   > Person: Thomas 50001 clerk
Suggestions:

Methods that should be implemented.

Each class should have an appropriate toString method. Here is an example of two such methods:

· In SeaPort - showing all the data structures:
   public String toString () {
      String st = "\n\nSeaPort: " + super.toString();
      for (Dock md: docks) st += "\n" + md;
      st += "\n\n --- List of all ships in que:";
      for (Ship ms: que ) st += "\n   > " + ms;
      st += "\n\n --- List of all ships:";
      for (Ship ms: ships) st += "\n   > " + ms;
      st += "\n\n --- List of all persons:";
      for (Person mp: persons) st += "\n   > " + mp;
      return st;
   } // end method toString
· In PassengerShip, using parent toString effectively:
   public String toString () {
      String st = "Passenger ship: " + super.toString();
      if (jobs.size() == 0) 
         return st;
      for (Job mj: jobs) st += "\n       - " + mj;
      return st;
   } // end method toString

Each class should have an appropriate Scanner constructor, allowing the class to take advantage of super constructors, and any particular constructor focusing only on the addition elements of interest to that particular class. As an example, here's one way to implement the PassengerShip constructor:

· PassengerShip Scanner constructor, the earlier fields are handled by Thing (fields: name, index, parent) and Ship (fields: weight, length, width, draft) constructors.
   public PassengerShip (Scanner sc) {
      super (sc);
      if (sc.hasNextInt()) numberOfPassengers = sc.nextInt();
      if (sc.hasNextInt()) numberOfRooms = sc.nextInt();
      if (sc.hasNextInt()) numberOfOccupiedRooms = sc.nextInt();
   } // end end Scanner constructor
In the World class, we want to read the text file line by line. Here are some useful methods types and code fragments that you should find helpful:

· Handling a line from the file:
   void process (String st) { 
   //       System.out.println ("Processing >" + st + "<");
      Scanner sc = new Scanner (st);
      if (!sc.hasNext()) 
         return;
      switch (sc.next()) {
         case "port"   : addPort      (sc); 
            break;
· Finding a ship by index - finding the parent of a job, for example:
   Ship getShipByIndex (int x) {
      for (SeaPort msp: ports)
         for (Ship ms: msp.ships)
            if (ms.index == x) 
               return ms;
      return null;
   } // end getDockByIndex
· Linking a ship to its parent:
   void assignShip (Ship ms) {
      Dock md = getDockByIndex (ms.parent);
      if (md == null) {
         getSeaPortByIndex (ms.parent).ships.add (ms);
         getSeaPortByIndex (ms.parent).que.add (ms);
         return;
      }
      md.ship = ms;
      getSeaPortByIndex (md.parent).ships.add (ms);
   } // end method assignShip
You will probably find the comments in the following helpful, they are mostly about similar projects and general issues in Java relevant to our programs:

· CMSC 335 Information
· Cave Strategy - getting started

